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Abstract
Ternary oxides have the potential to display better electrical and optical properties than the
commonly fabricated binary oxides. In our experiments, Zn2SnO4 (ZTO) nanowires were
synthesized via thermal evaporation and vapor phase transport. The opto-electrical performance
of the nanowires was investigated. An individual ZTO nanowire field-effect transistor was
successfully fabricated for the first time and shows an on–off ratio of 104 and transconductance
of 20.6 nS, which demonstrates the promising electronic performance of ZTO nanowire in an
electrical device. Field emission experiments on ZTO nanowire film also indicate their potential
application as a field emission electron source.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One-dimensional (1D) metal oxide nanostructures have
attracted immense interest due to their unique optical and
electrical properties as well as their promising applications
in the fabrication of nanodevices [1, 2]. To date, binary
oxides have been extensively fabricated and investigated, for
example ZnO [3] and CuO [4]. However, there are still
few studies involving ternary oxides, which potentially have
better properties than binary oxides, some of which include
electronic and gas sensing properties [5, 6]. A key advantage
of ternary oxides over binary oxides is that properties, such as
the electronic structure [7] and thermodynamic properties [8],
can be efficiently tuned by varying the proportion of each
component [9]. An important ternary oxide, Zn2SnO4 (ZTO),
has been reported to have high electron mobility, high electrical
conductivity and low visible absorption [10, 11], deeming
it suitable for applications in thin-film photovoltaic devices,
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solar cells, and sensors for combustible gases and humidity
detection [12, 13].

Previous studies on ZTO nanowires (NWs) have mainly
focused on the synthesis [14], growth mechanism [15, 16]
and photoluminescence properties [14, 15], with many other
physical properties left unexplored. In this paper, ZTO
NWs were fabricated and the optical and electrical properties
of these ternary oxide NWs were investigated. Individual
ZTO NW field-effect transistors (FETs) were configured and
their current–voltage (I –V ) characteristics with gating were
determined. Also, field emission tests of ZTO NWs film were
performed.

2. Experimental procedure

Growth of ZTO NWs was conducted in a horizontal tube
furnace via thermal evaporation and vapor phase transport.
The schematic experimental setup is shown in figure 1. A
clean (111)-oriented silicon substrate was first coated with
approximately 5 nm Au catalyst film. 0.1 g of ZnO:SnO:C
powder mixture with a weight ratio of 1:5:8 was loaded into a
small quartz tube of length 30 cm and inner diameter 1.4 cm,
with the substrate placed 2 cm downstream from the source.
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Figure 1. Schematic experimental setup (not drawn to scale) for the growth of ZTO NWs.

Figure 2. (a) SEM image of ZTO NWs on a Si substrate. Inset shows a high magnification SEM image, showing the presence of a catalyst
particle on the tip of the NWs, (b) TEM image of the NW, (c) HR-TEM of side-edge of the NW, (d) XRD pattern of ZTO NWs on a Si
substrate, (e) room temperature Raman spectrum of ZTO NWs.

This tube was then inserted into the working tube of length
75 cm and inner diameter 2.2 cm mounted on the furnace,
with the source being positioned at the center of the furnace.
The furnace was approximately 36 cm in length. The furnace
was set to heat to the reaction temperature of 1000 ◦C and
maintained for 1 h. Upon the furnace reaching 750 ◦C, a
constant gas flow (99.5% Ar, 0.5% O2) at 50 standard cubic
centimeters per minute (sccm) was turned on. The gas flow
was not turned on at a lower temperature to prevent any
undesired formation of ZnO NWs, since the formation of ZnO
nanostructures in the presence of graphite requires a lower
temperature of approximately 650–700 ◦C [17]. The purpose
of the graphite in precursor mixture was to serve as a reducing
agent, so as to obtain Sn and Zn vapor sources.

After being cooled to room temperature, the substrate
was characterized using scanning electron microscopy (SEM;
JEOL JSM-6700F), x-ray diffraction (XRD; Bruker D-8

Advanced, Cu Kα radiation) and high-resolution transmission
electron microscopy (HR-TEM; JEOL JEM-2010F). Raman
scattering was measured at room temperature (Witec CRM200,
532 nm excitation). The room temperature photoluminescence
(PL) spectrum was also recorded in the spectral range of 420–
870 nm using a He–Cd laser with a wavelength of 325 nm as
the excitation source.

To prepare the individual NW FET for electrical
performance testing, ZTO NWs were removed in ethanol,
after which the solution was ultrasonically dispersed and
dropped onto SiO2/Si (i.e. 200 nm insulated SiO2 film over Si
substrate). Subsequently, Au contact pads of 100 nm thickness
were fabricated by photolithography and rf-sputtering. The
transport properties were measured by a Suss probe station
with a Keithley 4200 semiconductor characterization system
(SCS).
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Figure 3. (a) Room temperature Ids–Vds curves at different gate
voltages. Inset shows the SEM image of a ZTO NW FET, (b) Ids–Vgs

curve obtained at Vds = 2.0 V.

3. Results and discussion

A typical SEM image is shown in figure 2(a). The NWs are
estimated to be about 20 μm in length and between 30 and
50 nm in diameter. Most of the NWs have a smooth outer
surface and catalyst particles present on their tips, one of which
is seen in the inset of the figure. When the experiment was
repeated without the Au coating on substrate, there was almost
no NW growth apart from those found at defect sites, which
suggests that the growth was dominated by the vapor–liquid–
solid (VLS) mechanism [18]. Figure 2(b) shows a typical TEM
image of the ZTO NW. The clear lattice fringes in figure 2(c)
of the HR-TEM image show the single crystalline nature of the
NW. The growth direction, with lattice spacing of 0.26 nm, can
be indexed to [311].

Figure 2(d) shows an XRD pattern of the as-grown sample,
with almost all the diffraction peaks being indexed to face-
centered spinel-structured ZTO, consistent with the standard
data file (JCPDS file No. 24-1470). The residual peak marked
with an asterisk can be indexed to Au(111) (JCPDS file No. 04-
0784), which originates from the catalyst. The absence of
any ZnO peaks in our sample shows its high purity. A room
temperature Raman spectrum of the NWs is illustrated in the
inset of figure 2(e). The Raman peak at 520 cm−1 corresponds
to Si while that at 666 cm−1 corresponds quite well to the well-
known ZTO peak [11].

Figure 4. Current density–electric field (J –E) plot of ZTO NWs.
Inset shows the Fowler–Nordheim (FN) plot of ZTO NWs with linear
dependence (solid line is the fitting result).

The inset of figure 3(a) is a SEM image of a ZTO NW FET
showing the channel length between electrodes to be about
3 μm. Figure 3(a) displays the current versus source–drain bias
(Ids–Vds) curves obtained under gate–source voltages (Vgs) of
0, 10, 20, 30 and 40 V. It is obvious that the conductance of the
NW increases monotonically as the gate potential increases,
providing evidence that the ZTO NW FET is an n-channel
device.

The Ids–Vgs curve of a single NW FET is shown in
figure 3(b). The on–off ratio at 2.0 V bias (comparing
Vgs = −20 and 20 V) exceeds 104. The transconductance
(gm), electron mobility (μ) and capacitance (C) in a typical
cylindrical NW with radius r can be expressed as [19]

Transconductance gm = dI

dVgs
(1)

Electron mobility μ = gm × ln(2h/r)

2πε0ε
× L

Vds
(2)

Capacitance C = 2πε0εL

ln(2h/r)
(3)

where h is the gate oxide layer thickness, r is the NW radius,
ε is the relative dielectric constant for SiO2 = 3.9 and L is the
NW channel length. For Vgs = 2.0 V, the transconductance
gm = dI/dVgs = 20.6 nS can be estimated from the linear
region (−8–8 V) of the Ids–Vgs curve. The capacitance of the
ZTO NW is C = 2.18 × 10−4 pF and the electron mobility
was calculated to be μ = 4.27 cm2 V−1 s

−1
at Vgs = 0 V.

Compared to a ZnO NW FET with similar dimensions [20],
our ZTO NW FET displays an enhanced on–off ratio and
electron mobility. The good on–off ratio and transconductance
of ZTO show the promising electronic performance of this
ternary oxide in a FET device.

Field emission studies were conducted on the ZTO NWs
using a two parallel-plate setup with an electrode distance of
100 μm, under a vacuum pressure of about 2 × 10−6 Torr.
Figure 4 depicts the plot of the typical current density–electric
field (J–E) curve, which shows the turn-on field of the NWs
to be about 4.7 V μm−1 at a current density of 0.2 μA cm−2.
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Figure 5. Room temperature PL spectra of ZTO NWs before
(red line) and after (black line) annealing in air at 700 ◦C for 2 h.

The maximum current density attained, which was calculated
to be about 1750 μA cm−2, corresponding to electric field of
10.6 V μm−1, can provide enough emission current as a field
emitter. The simplified Fowler–Nordheim (FN) equation is
given by

J = Aβ2 E2

�
exp

[
− B�3/2

β E

]
(4)

where J is the current density, E is the applied field strength,
� is the work function of ZTO NW, which is estimated to
be about 4.9 eV [21], A and B are constants with values
1.54 × 10−6 A V−2 eV and 6.83 × 103 V μm−1 eV−3/2

respectively [22].
The linear ln(J/E2) versus 1/E plot at high electric fields,

shown in the inset of figure 4, suggests that the classical FN
mechanism is responsible for the emission from the NWs.
β , the field enhancement factor, defined as the ratio of the
local electric field, Elocal, to the average electric field, E (in
V μm−1), was found to be 788. This value turned out to be
comparable to that of SnO2 [23] and CuO [4] and is adequate
for application as a field emission electron source, though not
as high as carbon nanotubes [24]. Improvements in the field
emission properties of the NWs can be made through better
alignment and density control, by modifying the experimental
parameters such as pressure, mass flow etc.

PL spectra of ZTO NWs before and after annealing at
700 ◦C in air for 2 h are shown in figure 5. In both plots, a
stable broad orange peak centered at 610 nm was obtained.
After annealing the as-grown ZTO NWs in air for 2 h, the
PL peak intensity significantly reduced. The reduction in PL
peak intensity after annealing may be attributed to the filling
of oxygen vacancies, which results in lower concentrations of
oxygen vacancies. In our experiment, the thermal evaporation
method was employed to fabricate the NWs, and thus as
anticipated, will result in the formation of oxygen vacancies
due to insufficient oxygen during the growth process [14].
These oxygen vacancies will induce defect levels within the
band gap that generate the orange emission of the ZTO NWs.
The annealing effect observed in our experiment can account
for the presence of these oxygen vacancies. This mechanism
is also consistent with that for ZnO, whose n-type conductivity
has been typically attributed to oxygen vacancies [25].

4. Conclusion

In summary, ZTO NWs were synthesized via thermal
evaporation and vapor phase transport process. Electrical
transport studies were conducted on the fabricated ZTO NW
FETs. The on–off ratio and transconductance are estimated to
be ∼104 and 20.6 nS respectively. Field emission experiments
determined the maximum current density to be 1750 μA cm−2

and the field enhancement factor as 788. Our experimental
results show the great potential ZTO NWs have for applications
in nanoscale electronic devices.
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